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Abstract

Improvement in performance after the end of the training session, termed ‘‘Offline improve-

ment,’’ has been shown in procedural learning tasks. We examined whether Offline improvement in

learning a novel orthography depends on the type of reading instruction. Forty-eight adults received

multisession training in reading nonsense words, written in an artificial script. Participants were

trained in one of three conditions: alphabetical words preceded by direct letter instruction (Letter-

Alph); alphabetical words with whole-word instruction (Word-Alph); and nonalphabetical (arbitrary)

words with whole-word instruction (Word-Arb). Offline improvement was found only for the Letter-

Alph group. Moreover, correlation with a standardized measure of word reading ability showed that

good readers trained in the Letter-Alph group exhibit greater Offline improvement, whereas good

readers trained in the Word-Arb group showed greater Within-session improvement during training.

These results suggest that different consolidation processes and learning mechanisms were involved

in each group. We argue that providing a short block of direct letter instruction prior to training

resulted in increased involvement of procedural learning mechanisms during training.

Keywords: Procedural learning; Reading acquisition; Transfer; Artificial language; Consolidation;

Declarative memory

1. Introduction

Reading acquisition should rely on both procedural and declarative learning mechanisms.

Procedural learning, the acquisition of skilled performance on a task, requires extraction of

recurring elements from repeating events and relies on striatal–thalamic–cortical loops

(Eichenbaum, 2003; Gabrieli, 1998; Mishkin, Malamut, & Bachevalier, 1984; Squire &
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Zola, 1996). Declarative knowledge, knowledge of facts and events, which involves the

detection of characteristics of a given stimulus in a single event (Squire, 2004), relies on the

hippocampus and parahippocampal regions that mediate changes in other cortical regions

(Eichenbaum, 2003; Gabrieli, 1998). Although they rely on (partly) distinct neural circuits,

information acquired initially by the rapid declarative system may be gradually procedural-

ized with recurring of analogous events (Aizenstein et al., 2004; Anderson, 1982; Marshall

& Born, 2007; Packard & McGaugh, 1996; Poldrack & Packard, 2003; Poldrack et al.,

2001; Schendan, Searl, Melrose, & Stern, 2003).

After years of dispute about the most effective method for reading instruction (Foorman,

1995), there is growing evidence in the last decade for the benefits of including systematic

letter-sound correspondence instruction, in addition to instruction of whole words, for read-

ing acquisition in both reading disabled and typically developing children (Ehri, Nunes,

Stahl, & Willows, 2001; de Graaff, Bosman, Hasselman, & Verhoeven, 2009; Shapiro &

Solity, 2008). This advantage raises the possibility that explicit teaching of letter-sound cor-

respondence triggers a different learning mechanism compared with methods that empha-

size larger units, such as whole words. Both procedural and declarative learning presumably

interact during reading acquisition. Skilled readers of all orthographies have conscious

declarative knowledge about the mapping of orthography to phonology in units of various

sizes (i.e., individual letters, letter clusters, and whole words). However, skilled fluent read-

ing is acquired gradually, as a function of repeated experience, which is the characteristic of

rote learning and skill acquisition (Karni, 1996). In previous studies, we used an artificial

orthography to examine the effects of instruction method on reading acquisition in adults

(Bitan & Karni, 2003, 2004). We found an advantage for direct letter instruction not only

for reading trained items and generalizing to untrained stimuli but also in long-term reten-

tion 6 months after training (Bitan & Karni, 2004). We suggested that letter instruction

resulted in greater reliance on procedural learning compared with whole-word instruction,

perhaps due to the greater number of repetitions on letters compared with words. Our

functional magnetic resonance imaging (fMRI) study showed that distinct brain regions

were involved in reading trained words depending on whether they were learned through

letter versus whole-word instruction (Bitan, Manor, Morocz, & Karni, 2005).

In the current study, we use an artificial orthography to examine the effects of instruction

method on the consolidation of knowledge after the end of training, that is, Offline improve-

ment. Previous motor and perceptual learning studies showed post-training improvement in

performance, measured a period of time after training, when compared with performance

immediately after training (Cohen, Pascual-Leone, Press, & Robertson, 2005; Fenn, Nus-

baum, & Margoliash, 2003; Fischer, Hallschmid, Elsner, & Born, 2002; Gaab, Paetzold,

Becker, Walker, & Schlaug, 2004; Gervan & Kovacs, 2010; Karni, Tanne, Rubenstein,

Askenasy, & Sagi, 1994; Korman, Raz, Flash, & Karni, 2003; Kuriyama, Stickgold, &

Walker, 2004; Stickgold, Hobson, Fosse, & Fosse, 2001; Walker, Brakefield, Morgan,

Hobson, & Stickgold, 2002; Wright & Sabin, 2007). This process of consolidation by which

a fragile memory transforms into a robust trace (Robertson, Pascual-Leone, & Press, 2004;

Walker, 2005) has been suggested to depend on sleep (Fischer, Wilhelm, & Born, 2007;

Fischer et al., 2002; Karni et al., 1994; Korman et al., 2007; Maquet et al., 2004; Plihal &
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Born, 1997; Rauchs, Desgranges, Foret, & Eustache, 2005). Although sleep also enhances

consolidation in hippocampus-dependent declarative learning (Backhaus et al., 2007; Born,

Rasch, & Gais, 2006; Drosopoulos, Wagner, & Born, 2005; Marshall, Helgadottir, Molle, &

Born, 2006; Marshall, Molle, Hallschmid, & Born, 2004; Peigneux et al., 2004; Plihal &

Born, 1997; Rasch, Buechel, Gais, & Born, 2007), its effect is often seen in reducing forget-

ting that normally occurs after training, rather than as a performance improvement in the

next session (Drosopoulos et al., 2005; Ellenbogen, Hulbert, Stickgold, Dinges, & Thomp-

son-Schill, 2006; Gais, Lucas, & Born, 2006; Marshall & Born, 2007). These studies imply

that while Offline improvement is expected in procedural learning, greater decay and forget-

ting is expected for declarative learning (Marshall & Born, 2007). In the current study, we

examined whether providing direct letter instruction for individuals learning to read a new

orthography affects consolidation processes reflected in Offline improvement.

2. Materials and methods

2.1. Participants

Forty-eight Northwestern University students (18–30 years; 16 males) participated. All

were native English speakers with normal linguistic and reading skills and no diagnosis of

learning disabilities, attention deficit, neurological, or psychiatric disorders. Their adequate

reading and learning abilities were confirmed by four standardized tests (WJ-III, Woodcock,

McGrew, & Mather, 2001): ‘‘Letter-Word Identification’’ and ‘‘Word Attack’’ subtests,

measuring decoding ability of words and nonwords, and ‘‘Analysis Synthesis’’ and ‘‘Con-

cept Formation’’ subtests from the cognitive abilities scale, for assessing learning abilities.

Participants were randomly assigned to three groups (Letter-Alph, Word-Alph, and Word-

Arb) with balanced ages and gender across groups, and no significant differences in stan-

dardized tests scores (see Table 1).

Table 1

Age, gender, and standard scores by groups

Group

Mean

Age

Concept

Formation

Analysis

Synthesis

Word

Identification

Word

Attack

Word-Arb n = 16 (6 males) 21.6 M 111.2 117.1 118.9 108.8

SD 7.8 19.2 5.7 7.3

Letter-Alph n = 16 (4 males) 19.8 M 109.4 113.8 116.0 107.9

SD 7.5 13.9 6.5 8.4

Word-Alph n= 16 (6 males) 20.1 M 110.4 114.4 119.8 110.7

SD 9.2 15.9 6.3 5.4

Total N = 48 20.5 M 110.4 115.1 118.2 109.1

SD 8.0 16.2 6.3 7.1

Note. Standard scores for the tests taken from the Woodcock Johnson III battery for participants in the three

training groups.
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2.2. Stimuli

Stimuli and procedure were modified from a previously used paradigm (Bitan & Karni,

2004). Modifications included better control for visual complexity of the orthography across

groups, using a between subject design, testing generalization at three time points during

training, adding auditory presentation of correct pronunciations, and adaptation for English

speakers.

2.2.1. Trained set
Twelve nonwords written in a novel orthography, in which a pair of symbols represents

one letter, and six symbols in different permutations create all letters (see Table 2). This

orthography was designed to enhance demands on segmentation processes reflecting the

challenges in learning to read natural orthographies with different grain sizes. Nonwords

were composed of two consonants and one vowel in all possible syllable structures (CVC,

VCC, CCV), and each phoneme repeated six times in the list of 12 nonwords. In the alpha-

betical groups (Letter-Alph and Word-Alph), each nonword is represented using a consistent

correspondence of grapheme (letter) to phoneme, whereas in the Word-Arb group the corre-

spondence of graphemes to phonemes differs across nonwords (see Table 2). Word-Arb was

included to determine whether participants relied entirely on whole-word identification in

Word-Alph, in which case the pattern of results should be similar for the two conditions.

Pronunciation of stimuli was based on the CELEX database (Baayen, Piepenbrock, &

Gulikers, 1995), with two pronunciations for each vowel depending on its position to

increase the similarity to English.

2.2.2. Transfer tests
The transfer of learning gains to novel stimuli was tested in four types of transfer tests

(see Table 2): (1) Same-Alphabet transfer consists of new nonwords written with the same
alphabet and same symbols. (2) New-Alphabet transfer consists of new nonwords written

with a new alphabet and the same symbols. A comparison of Same-Alphabet versus

New-Alphabet transfer serves as an indicator of alphabetical knowledge. (3) Same-Pattern

transfer consists of the trained nonwords written with new symbols arranged in the same
visual pattern of symbol repetitions and internal symmetries as the trained nonwords. (4)

New-Pattern transfer consists of the trained nonwords written with new symbols arranged in

a new visual pattern. A difference between Same-Pattern and New-Pattern transfer is an

indicator of visual pattern knowledge. Three sets of lists, 12 nonwords in each list, were

created for each transfer type in order to examine transfer in different points during training.

2.3. Procedure

Participants were trained on six sessions, spaced 1–3 days apart (see Fig. 1). The stimuli

were presented on a PC screen, 60 cm from the participant. Stimulus presentation data

recording were carried out using E-Prime 1.0 software (Psychology Software Tools,

Pittsburgh, PA).
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2.3.1. Session 1
All groups received a ‘‘Whole-word instruction’’ block, in which participants were pre-

sented with each target nonword written in the novel orthography together with its corre-

sponding phonological translation to Latin letters below for 2,000 ms (Fig. 1B). Participants

simultaneously heard the correct pronunciation through headphones and had to repeat it and

memorize the association. The Latin letter translation was included to maximize learning.

Nonwords appeared twice in a fixed order (24 trials).

A ‘‘Letter instruction’’ block was given prior to the whole-word instruction block only in

Letter-Alph. Here, individual letters in the novel orthography were presented with their

Table 2

Examples of stimuli

Note. Examples of graphemes and nonwords used in training and in the

four transfer testing conditions in the alphabetical (Letter-Alph and Word-

Alph) and arbitrary (Word-Arb) conditions.
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corresponding Latin letter translation for 2,000 ms. Subjects had to pronounce the phoneme

and memorize the association. Letters appeared four times in a fixed order (24 trials).

Instruction blocks were given during the first training session only.

A ‘‘Test block’’ of 48 trials followed, in which pairings of target nonword and Latin

letters translation appeared for 800 ms (Fig. 1B). Half of the pairings were correct and

participants had to indicate by button press whether pairing was correct. Violations in

incorrect pairings were equally spread across letters, so all letters in the nonword had to be

processed. This ‘‘test block’’ was included as an estimate for performance before the

beginning of training to serve as a baseline for normalizing the effects of transfer tests.

This test was followed by 7 training blocks, 48 trials each (336 trials total). Training blocks

were similar to the test block except that participants received an auditory feedback when

they made a mistake.

2.3.2. Sessions 2–6
These sessions included seven training blocks (see Fig. 1). In Sessions 2, 4, and 6, train-

ing was followed by a test block and then four transfer tests (one of each type: Same-Alpha-

bet transfer, New-Alphabet transfer, Same-pattern transfer, and New-pattern transfer, 48

trials each). Transfer tests were preceded by a ‘‘Whole-word instruction block’’ for the

untrained stimuli, so that participants were able to perform the test even for a new alphabet.

No ‘‘Letter instruction block’’ was given for the transfer stimuli in any group. The order of

the four types of transfer tests was balanced across individuals and fixed for each individual

across sessions.

2.4. Data analysis

Because we measure proportion, which is limited by 1.0 and is asymmetrically distrib-

uted especially in late sessions, we used the Arcsine transformation on the raw accuracy

measured in each block. All reported differences and ratios in accuracy were calculated

on the transformed data. Our measure for ‘‘Offline Improvement’’ was calculated as the

(A)

(B)

Fig. 1. (A) Timeline of the experiment; (B) example of display during training.
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difference in accuracy between performance in the first block of each session and the last

block of the previous session. In order to account for learning gains that occur between any

consecutive training blocks, Offline improvement was compared with a measure of

‘‘Within-session improvement’’ calculated as the mean difference between all pairs of con-

secutive blocks in a given session.

In order to test the unique contribution of Offline vs. Within-session improvement, we fit-

ted a curve to the data from each group separately. Using the Akaike Information Criterion

(AIC) for goodness of fit, we tested whether the addition of five dummy variables coding

for between-session gains (one for each session) had a significant contribution to model fit

beyond a linear curve, and compared it with the contribution of six dummy variables coding

for improvement in the first pair of blocks within each session (block 2–block 1). Four mod-

els were compared, which were based on a linear curve: (1) with no dummy variables; (2)

with five dummy variables coding for enhanced Offline improvement; (3) with six dummy

variables coding for enhanced improvement from block 1 to block 2 within each session;

and (4) with all the above 11 dummy variables.

To test generalization, we used a normalized transfer index that reflects the proportion

from the concurrent gain in performance on trained items calculated as follows:

Transfer Index

¼ ðAccuracy on transfer test�Accuracy on trained items before trainingÞ
ðConcurrent accuracy on trained items�Accuracy on trained items before trainingÞ

In this equation, ‘‘accuracy on trained items before training’’ was measured by the ‘‘Test

block’’ conducted after the instruction block(s) but before the training blocks (see above);

therefore, performance may be above chance level. This procedure is identical to the mea-

surement in the transfer test, in which participants’ performance is measured after a block of

instruction but with no training. Normalization of transfer to the gain in performance on

trained items was used in order to account for differences in performance on the transfer test

that are due to differences in performance on trained items. For example, poor performance

on a transfer test in light of high gains on trained items is indicative of low generalization of

learning. In contrast, individuals with poor performance on transfer tests with low gains on

trained items may simply exhibit poor learning rather than lack of generalization.

3. Results

Accuracy and reaction time (RT) during training improved in all three training condi-

tions (Fig. 2). GLM repeated-measures analyses were conducted on accuracy and RT

(6 Sessions · 7 Blocks · 3 Groups). Accuracy showed significant main effects of session,

F(5,225) = 168.6, p < .001, and block, F(6,270) = 16.4, p < .001, and a marginally

significant interaction of group by session, F(5,225) = 1.87, p = .05. This interaction was

followed by separate analyses within each session. Only in Session 1, this analysis
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revealed a significant effect of group, F(2,45)=3.26, p < .05. Post hoc comparisons with

Tukey correction for multiple comparisons showed significantly higher accuracy in

Letter-Alph compared with Word-Arb (p = .044). RT analysis showed a significant effect

of session, F(5,225) = 10.6, p < .001, and block, F(6,270) = 8.7, p < .001, with no signif-

icant main effect or interactions with group. No speed accuracy tradeoff was observed.

3.1. Offline improvement versus Within-session improvement

Fig. 3A shows Offline and Within-session improvement in Sessions 1–5 (Offline

improvement cannot be measured for the last session). A GLM analysis was conducted with

2 Types of gain (Offline vs. Within-session improvement) · 5 Sessions · 3 Groups. This

revealed a significant interaction of gain and group, F(2,41) = 4.23, p < .05. A separate

(A)

(B)

Fig. 2. Performance during training in the three groups. Accuracy (A) and reaction time (B) are plotted per

block, with seven blocks per session. Error bars indicate standard errors.

8 T. Bitan, J. R. Booth ⁄ Cognitive Science (2012)



analysis within each group showed a significant difference between Offline improvement

and Within-session improvement only for Letter-Alph, F(1,15) = 5.34, p < .05 (see

Fig. 3B). To further test the interaction of group and gain, separate analyses were conducted

for each type of gain. The analysis of Offline gains showed a significant effect of

group—F(2,45) = 4.18, p < .05 corrected for two comparisons. Tukey post hoc compari-

sons showed significant differences between Letter-Alph and Word-Arb (p = .04) and

between Letter-Alph and Word-Alph (p = .039). The analysis of Within-session improve-

ment did not show a significant group effect, F(2,45) = 3.78, p > .05, corrected for two

comparisons.

In order to examine whether group differences specific to Offline improvement could be

accounted for by differences in the stability of the two measurements (namely, Offline- vs.

Within-session improvement) or greater fatigue in the Letter-Alph group, we conducted

a GLM analysis breaking down Within-session improvement into individual pairs of

(A)

(B)

Fig. 3. (A) Offline improvement and Within-session improvement in the three groups. Offline improvement is

the gain in accuracy from the last block in each session to the first block of the next session. Within-session

improvement is the average difference between consecutive blocks within each session. (B) Offline improve-

ment and Within-session improvement averaged across sessions.
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consecutive blocks. This resulted in analysis of 7 Pairs (6 Pairs Within-session and 1 indi-

cating Offline improvement) · 5 Sessions · 3 Groups. This analysis showed a significant

interaction of Pair · Group, F(12,270) = 2.17, p < .05, which was followed by the analysis

of Pairs · Sessions within each group. For Letter-Alph, this analysis revealed a significant

effect of Pair, F(6,90) = 2.26, p < .05, and specific contrasts show that only the Offline

improvement was significantly different from the mean, F(1,15) = 5.34, p < .05. Analysis

within other groups showed no significant effect of Pair—F(6,90) = 1.36 and 1.22, p > .05;

for Word-Arb and Word-Alph, respectively (see Fig. 4). Fig. 4 also shows that effects of

fatigue cannot explain the greater Offline improvement in the Letter-Alph group: (a) initial

gains in the Letter-Alph group are not larger than later gains within the session. (b) GLM

analysis within Pair did not show a significant difference between groups for the ultimate or

penultimate pairs of blocks (7–6 and 6–5), F(2,45) = 1.4, 0.65, respectively, p > .05.

To test whether Offline and Within-session improvement are differentially recruited in

individuals with good versus poor reading ability, we tested in each group the correlation of

Offline and Within-session improvement (averaged across sessions) on one hand with the

Letter-Word Identification test (LWID) on the other hand. In Letter-Alph, LWID was posi-

tively correlated with Offline improvement (r = .49, p < .05) but not with Within-session

improvement (r = ).29, p = ns) (see Fig. 5A). However, Word-Arb showed the opposite

pattern: LWID was positively correlated with Within-session improvement (r = .60,

p < .01) but not with Offline improvement (r = ).39, p = ns) (see Fig. 4B). No correlations

were found for Word-Alph.

In order to test the contribution of Offline improvement to explaining performance in the

Letter-Alph group, we tested four models based on a linear curve. Using AIC, we tested the

contribution of adding the following dummy variables over a simple linear model:

(a) enhanced Offline improvement, (b) enhanced improvement between the first pair of

blocks within session, or (c) both. Table 3 shows that the model with Offline variables for

Letter-Alph indicates a better fit than the simple linear model or the model with only

Within-session variables. However, this model shows that only the coefficients for Offline

Fig. 4. Gain in accuracy between consecutive blocks Within-session (blocks 1–7) and between sessions (Offline

improvement). Gains are averaged across sessions.
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improvement in the first and second sessions were significant (see Fig. S1). When including

both Offline and Within-session variables in the same model, the coefficients for Offline

improvement in the first and second sessions remain significant, in addition to Within-

session gain in the first pair of blocks in the first session. In contrast to Letter-Alph, Table 3

shows that, for Word-Alph and Word-Arb, most offline coefficients are negative, indicating

reduction rather than improvement between sessions (see Fig. S1). The positive ‘‘offline

sess. 1’’ coefficient in Word-Alph appears to actually reflect a within-session gain because

this variable is no longer significant in the model that includes both types of variables.

3.2. Transfer tests

Fig. 6 shows the transfer index calculated for each transfer test at each time point,

whereas Fig. 7 shows the differences between these indices indicating Alphabetic and Pat-

tern knowledge. A GLM analysis, conducted with 2 Types of knowledge (Alphabetic vs.

Pattern knowledge) · 3 Time points · 3 Groups showed a significant interaction between

(A)

(B)

Fig. 5. Correlation between reading standard score and improvement (Offline improvement and Within-session

improvement, each averaged across sessions) in Letter-Alph (A) and Word-Arb (B) groups. *Significant correla-

tion. R2 is presented.
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the type of knowledge and group, F(2,45) = 6.8, p < .01. A separate analysis within each

type of knowledge showed a significant effect of group for Alphabetic knowledge,

F(2,45) = 12.48, p < .001, but not for Pattern knowledge, F(2,45) = 1.83, p > .05. Tukey

post hoc comparisons between groups for Alphabetic knowledge showed significantly

greater alphabetic knowledge for Letter-Alph compared with Word-Alph (p = .013) and

compared with Word-Arb (p = .000).

To examine the evolution of the acquired knowledge during training, we calculated the

difference between the first and last time points for each type of transfer (Fig. 8). A GLM

analysis was conducted on the difference between first and last time points, with 4 Types of

transfer test · 3 Groups. The analysis showed a significant effect of group, F(2,45) = 5.61.

p < .01, and no interaction between group and transfer type, F(6,135) = 1.77, p > .05.

Tukey post hoc comparisons revealed a significant difference between Letter-Alph and

Table 3

Goodness of fit estimates and variable coefficient for model curves fitted to each group

Model Type Coefficient

Letter-Alph Word-Alph Word-Arb

AIC Coeff. t AIC Coeff. t AIC Coeff. t

Linear )622.3 )707.5 )865.4

Linear + 5 Offline

variables

)660.4 )765.3 )877.5

Offline sess. 1 3.78* 2.86* 0.58

Offline sess. 2 4.19* )0.59 )0.53

Offline sess. 3 0.72 )2.57 )1.39

Offline sess. 4 )0.4 )2.56 )2.17
Offline sess. 5 0.57 )3.77* )3.86*

Linear + 6 First pair

within session

)651.9 )765.1 )868.2

First pair sess. 1 2.59* 3.59* 1.49

First pair sess. 2 1.99 3.69* 2.47
First pair sess. 3 2.66* )0.12 1.25

First pair sess. 4 )1.47 )0.88 0.93

First pair sess. 5 )0.53 )1.57 )0.57

First pair sess. 6 )1.48 )2.01 )1.38

Linear + all 11

variables

)646.9 )748.8 )851.3

Offline sess. 1 2.34 0.81 )0.01

Offline sess. 2 2.94* 0.5 )0.63

Offline sess. 3 1.9 )1.51 )1.77

Offline sess. 4 )1.02 )1.02 )1.24

Offline sess. 5 1.55 )1.97 )2.2
First pair sess. 1 2.83* 3.18* 1.03

First pair sess. 2 )0.03 1.33 1.01

First pair sess. 3 0.07 )0.72 0.87

First pair sess. 4 )1.47 0.41 1.55

First pair sess. 5 1.32 )0.35 0.21

First pair sess. 6 )1.38 )0.06 0.24

Note. AIC, Akaike Information Criterion for goodness of fit (smaller is better); Coeff. t, t-value of variable

coefficient. Bold p < .05; bold*p < .01.
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Word-Alph (p = .032) and between Letter-Alph and Word-Arb (p = .009), indicating that

overall the increase in performance on the transfer tests from the first to last test was greatest

for the Letter-Alph. One-sample t-tests conducted within each group showed for Letter-Alph

(A) (B)

Fig. 7. Alphabetical knowledge and pattern recognition knowledge at three different points in training for all

groups. Alphabetical knowledge (A) is calculated as the difference between the Same-Alphabet and New-

Alphabet transfer. Pattern recognition (B) is calculated as the difference between Same-pattern and New-pattern

transfer.

(A)

(B)

(C)

(D)

Fig. 6. Index of accuracy on the transfer tests (see text for definitions) at three different time points in training

(1, 2, 3).
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a significant increase in Same-Alphabet transfer, t(15) = 1.87, p < .05; New-Pattern trans-

fer, t(15) = 2.09, p < .05; and New-Alphabet Transfer, t(15) = 2.14, p < .05. For Word-

Arb, there was a significant decrease in New-Alphabet transfer, t(15) = )2.41, p < .05, and

in New-pattern Transfer, t(15) = )1.97, p < .05. For Word-Alph, a significant decrease was

found in Same-pattern transfer, t(15) = )1.9, p < .05.

Finally, to test whether Offline improvement is associated with alphabetic knowledge, we

correlated, within each group, Offline or Within-session improvement (averaged across ses-

sions) with alphabetic knowledge in three time points. Only for Letter-Alph, alphabetic

knowledge was positively correlated with Offline improvement (r = .51) and negatively cor-

related with Within-session improvement (r = ).49) in the second time point. However, this

did not survive a correction for multiple comparisons. No such correlations were found in

the other groups.

4. Discussion

Our results show that learning to read an alphabetical orthography following direct

instruction on letters (Letter-Alph) resulted in higher accuracy on trained items compared

with reading whole words in a nonalphabetical orthography (Word-Arb) only in the first

training session. No difference was found between the two groups trained on the alphabeti-

cal orthography (Letter-Alph and Word-Alph). However, in spite of the overall similarity in

performance, the groups differ in the amount of Offline improvement, namely, the gain in

performance after the end of each training session. Participants in Letter-Alph showed sig-

nificantly more Offline improvement compared with the two groups that received only

whole-word instruction. Moreover, we found that reading skill (measured by a standardized

word reading test) was correlated with a different type of gain in different groups. Good

readers in the Letter-Alph group showed more Offline improvement, whereas good readers

in the Word-Arb group showed larger Within-session improvement. Finally, testing the

Fig. 8. Increase in transfer from second to the last training session, calculated by the difference in transfer index

in the sixth minus second session. Negative values indicate a decrease in the amount of transferred knowledge

from early to late stages of training.
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transfer of learning gains to untrained stimuli showed higher alphabetical knowledge for the

Letter-Alph group compared with the Word-Alph group across all sessions. During training,

participants in the Letter-Alph group also showed an increase in their ability to generalize

their acquired knowledge to different novel orthographies, whereas knowledge acquired

through whole-word instruction became increasingly specific.

4.1. Reading of trained items and Offline improvement

The advantage found for Letter-Alph compared with Word-Arb in reading trained items

on the first training session suggests that, in the early stages of training, learning may be

facilitated by focusing on smaller segments, rather than memorizing larger units. These

results are consistent with findings from classroom studies showing the advantage of expli-

cit instruction of letter-sound correspondences for beginning readers (Ehri et al., 2001;

de Graaff et al., 2009; Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001; Shapiro &

Solity, 2008). Performance of participants in Word-Alph was not different from either of

the two other groups. The relatively small differences in performance among groups may

be due to the small number of items presented in training, which may facilitate whole-word

identification.

More dramatically, participants in Letter-Alph showed greater Offline improvement

compared with the groups with only whole-word instruction, especially after the first and

second sessions. Moreover, although participants in Letter-Alph showed more Offline- than

Within-session improvement, no Offline gains were found in the other groups. These

differences in the time course of improvement suggest that consolidation processes in

Letter-Alph are different from those in the other groups, perhaps due to different learning

mechanisms involved during training. This notion of reliance on different learning mecha-

nisms is supported by the finding that reading skill was correlated with different types of

gains in the different groups, with critical contribution of Offline improvement in Letter-

Alph, and of Within-session improvement in Word-Arb. When good readers are presented

with the training material, they presumably converge on the most effective learning strategy

afforded by the available information. Thus, these results support the conclusion that learn-

ing relied on different learning mechanisms in the two groups. Although both declarative

and procedural learning processes were presumably involved in learning of all groups, we

suggest that the greater contribution of Offline improvement in Letter-Alph indicates that

learning in this group involves procedural learning processes more than learning in the

other two groups.

Previous studies have shown that consolidation of procedural learning resulted in Offline

improvement measured after a period of time in sleep (Cohen et al., 2005; Fischer et al.,

2002; Jackson et al., 2008; Korman et al., 2003; Kuriyama et al., 2004; Robertson et al.,

2004; Walker, 2005; Walker et al., 2002). Declarative memory is considered to be less

robust and decay faster than nondeclarative processes (Allen & Reber, 1980; Reber, 1992;

Tunney, 2003). It should be noted that consolidation of declarative memories also benefits

from sleep (Born et al., 2006). However, rather than Offline improvement in performance,

the benefit of sleep for hippocampal-related learning is typically manifested as increasing
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the chances of gaining insight from implicit training (Born et al., 2006; Ellenbogen, Hu,

Payne, Titone, & Walker, 2007; Fischer, Drosopoulos, Tsen, & Born, 2006; Robertson &

Cohen, 2006; Spencer, Sunm, & Ivry, 2006; Wagner, Gais, Haider, Verleger, & Born, 2004)

or diminished decay on the day following the learning episode (Drosopoulos et al., 2005;

Ellenbogen et al., 2006; Gais et al., 2006; Marshall & Born, 2007). A number of studies

have shown Offline improvement in a task considered to rely on hippocampal-dependent

declarative learning, namely, paired-associates learning (Marshall et al., 2006; Plihal &

Born, 1997; Wilhelm, Diekelmann, & Born, 2008). However, even in these studies, we can-

not be confident that Offline improvement was the result of the declarative component of

learning because memory tasks are never purely declarative or procedural (Born et al.,

2006). Previous studies have shown that declarative processes and hippocampal involve-

ment may constitute the initial phases of skill acquisition (Aizenstein et al., 2004; Anderson,

1982; Marshall & Born, 2007; Nokes & Ohlsson, 2005; Poldrack & Packard, 2003; Robert-

son, 2009; Schendan et al., 2003). In all the above paired-associates studies (Marshall et al.,

2006; Plihal & Born, 1997; Wilhelm et al., 2008), participants were repeatedly exposed to

trained stimuli until they reached a predefined criterion. This repetition may have contrib-

uted to the proceduralization of learning, so that Offline improvement could have resulted

from a procedural component. Another verbal learning task that showed Offline improve-

ment was a multisession training on an artificial morphological rule, where the authors attri-

bute it to procedural learning (Ferman, Olshtain, Schechtman, & Karni, 2009).

One possible account for the difference between groups in Offline improvement is greater

retroactive interference in the whole-word reading groups (i.e., Word-Arb and Word-Alph)

when compared with the Letter-Alph group. It has been shown that retroactive interference

from subsequently encountered experiences can impede Offline improvement in motor skill-

learning tasks (Balas, Netser, Giladi, & Karni, 2007; Dorfberger, Adi-Japha, & Karni,

2007). Interference may occur even if the intervening experiences are not similar to the

newly learned task (Balas et al., 2007; Brown & Robertson, 2007; Wixted, 2004). It is spec-

ulated that, in the current study, learning in the Word-Alph and Word-Arb groups may have

suffered greater interference from general everyday activities of university students such as

reading and attending classes, because they require item-specific declarative learning. Stud-

ies using artificial grammar and paired associates paradigms show greater effects of retroac-

tive interference in declarative compared with nondeclarative learning (Graf & Schacter,

1987; Tamayo & Frensch, 2007; Tunney, 2003). Finally, even if Offline improvement can-

not be considered an exclusive marker of procedural learning, given the greater susceptibil-

ity of declarative learning to rapid decay and interference, procedural consolidation is more

likely to manifest in Offline improvement and may thus explain the results of the current

study.

Recent studies (Cai & Rickard, 2009; Rickard, Cai, Rieth, Jones, & Ard, 2008) ques-

tioned the effect of offline enhancement in motor sequence learning by showing that

improvement in performance after sleep, typically shown in sleep studies in comparison

with a ‘‘wake’’ group, diminishes when controlling for circadian effects and avoiding

averaging across trials (which masks effects of initial forgetting). These factors cannot

explain the findings of the current study, which show differential effects of Offline
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improvement in groups receiving the same training schedule and which differ only in the

content of the first instruction block. Another factor that can account for Offline improve-

ment is fatigue, which may decrease performance at the end of the session (Sheth, Janvely-

an, & Khan, 2008). The effect of fatigue on offline gains is enhanced under massed

training conditions when compared with spaced training (Rickard et al., 2008). The self-

pacing of trials in the current study presumably enhanced participants’ comfort and

reduced effects of fatigue. Moreover, the analysis of pairs of blocks within each session is

not the characteristic of fatigue and does not show evidence for greater fatigue in the Let-

ter-Alph compared with other groups. Another potential explanation for performance

improvement between sessions is continued rehearsal after the end of training, which may

be more successful in Letter-Alph because of the smaller units. However, given the nov-

elty of the characters used in the orthography, it is unlikely that participants would retrieve

them in a free recall setting.

The results of the current study are consistent with our previous results showing better

preservation of acquired knowledge following direct letter instruction, when measured

6 months after training (Bitan & Karni, 2004). The current findings further show that

learning following letter instruction is not only more resistant to forgetting, but it actually

improves after training. In both studies, the greater resistance to forgetting after direct

letter instruction may result from greater reliance on procedural learning due to more

repetitions on letter-size units compared with word-size units in training. If Offline

improvement in Letter-Alph indicates procedural consolidation, it suggests that partici-

pants in this group reached a stage in which new routines for performing a trained task are

established. Hauptmann, Reinhart, Brandt, and Karni (2005) suggest that the saturation of

Within-session improvement and the appearance of Offline improvement mark a qualita-

tive change in brain areas engaged in task performance early on. According to this notion,

only when the best performance has been attained by available routines can new routines

be established resulting in an Offline improvement in performance. This interpretation and

the results of the current study are consistent with a previous fMRI study (Bitan et al.,

2005) that used a similar training paradigm, and compared trained and untrained words

(Same-Alphabet transfer) between groups. The results showed that only in the letter-

instruction group did reading of trained words become independent of decoding processes

evident in the left inferior frontal gyrus. In contrast, reading of alphabetic words in the

group that received whole-word instruction did not achieve this stage of automatic fluent

recognition, as they were still engaged in effortful decoding of trained words even after

six training sessions. This incomplete automatization of trained words in Word-Alph may

reflect lack of proceduralization.

4.2. Generalization

The results of the transfer tests are consistent with our previous studies (Bitan & Karni,

2003, 2004) in showing greater alphabetical knowledge in Letter-Alph when compared with

Word-Alph, suggesting that direct letter instruction is more effective than incidental learn-

ing of letters for reading unfamiliar words. The current study also tested the evolution of
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knowledge generalization throughout training and showed greater increase in generalization

for Letter-Alph compared with the other groups, even for novel orthographies. These results

suggest that individuals that received letter instruction not only acquired knowledge of the

mapping between graphemes and phonemes in the trained orthography but also learned to

segment strings of novel symbols, a skill that could be applied to a broader range of orthog-

raphies. These results may imply that explicit instruction on letter-decoding in one language

may facilitate learning to read in subsequently learned languages with similar orthographic

structures. In contrast, generalization to novel orthographies decreased with training in

Word-Arb, indicating that participants learned only item-specific information rather than

general pattern identification strategies; thus, these could not be generalized to other orthog-

raphies. Their knowledge becomes increasingly specific to trained patterns during training.

These findings are consistent with bilingual studies showing the effect of reading experience

in the first language on the acquisition of reading in the second language (Holm & Dodd,

1996; Jimenez, Garcia, O’Shanahan, & Rojas, 2010).

One question that remains open is the relationships between declarative and procedural

learning processes and the generalizability of the acquired knowledge. Although the general

notion tends to view skills as general tools that may be applied in a wide range of contexts,

learning theories have argued that procedural learning is specific for the trained stimuli and

context, whereas declarative knowledge is more abstract and thus more flexible (Anderson,

1982; Glisky & Schacter, 1987; Schacter, 1985). This view is consistent with perceptual

learning tasks (Hauptmann et al., 2005; Karni & Sagi, 1993) and motor sequence learning

studies showing a decrease in transfer to untrained fingers (Korman et al., 2003; Tracy

et al., 2001). Other learning theories suggest that both procedural and declarative knowledge

may generalize during training (Allen & Brooks, 1991; Nokes & Ohlsson, 2005; Perkins &

Salomon, 1987). These are supported by studies showing an increase in generalization dur-

ing training in motor learning (Japikse, Negash, Howard, & Howard, 2003; Rand, Hikosaka,

Miyachi, Lu, & Miyashita, 1998), mirror reading skill (Poldrack & Gabrieli, 2001), and pho-

nological discrimination (Fenn et al., 2003) tasks. Generalization in procedural and declara-

tive memory may depend on different parameters in the training experience. Declarative

knowledge that is acquired through deliberate efforts to represent general principles at high

level of abstraction, such as in mathematical problem solving, will therefore subsume a

wider range of cases (Perkins & Salomon, 1987). However, procedural knowledge would

also generalize broadly if the same skill is practiced in various contexts (Nokes & Ohlsson,

2005; Perkins & Salomon, 1987; Stokes, Lai, Holtz, Rigsbee, & Cherrick, 2008), for exam-

ple, playing a variety of melodies when practicing an instrument would enhance generaliza-

tion to untrained melodies.

In the current study, the increase in generalizability for the Letter-Alph group may arise

from the procedural learning component. Because letter segmentation was trained in the var-

ied context of different words, processes of segmentation and decoding become automatic

and operate effortlessly on untrained stimuli. Alternatively, the declarative knowledge pro-

vided during direct letter instruction may be responsible for the enhanced generalizability

because participants have learned an abstract segmentation rule that may be deliberately

applied to new orthographies.
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In conclusion, our results suggest that providing direct letter instruction prior to training

on reading a new orthography results in reliance on different learning processes compared

with individuals who receive only whole-word instruction. We suggest that the former relies

more on a procedural learning mechanism, whereas the latter involves mainly declarative

learning. This difference in the underlying learning mechanisms can explain the advantage

found for direct letter instruction for reading acquisition in more natural settings. This study

provides the first evidence that Offline improvement in performance, after the end of training,

depends on the specific type of instruction and not only on the task at hand or sleep schedule.
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